

				Sub	ject	Coc	le: F	(CA	104
Roll No:									

Printed Page: 1 of 2

MCA (SEM I) THEORY EXAMINATION 2023-24 DISCRETE MATHEMATICS

TIME: 3HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

Qno.	Question	Marks
a.	Define the Cartesian Product of sets with example.	2
b.	If set Ahas n elements, how many relations are there from A to A?	2
c.	Draw the Hasse diagram of $(D_8, /)$.	2
d.	Express the following Boolean function in Sum of minterms: $F(x, y, z) = x + y'z$	2
e.	Prove the following Equivalences by using Truth table: $(p \rightarrow q) \rightarrow q \equiv p \lor q$	2
f.	Define Bound and Free variables with example.	2
g.	Define Order of an element of a Group with example	2
h.	What do you mean by Even and Odd Permutation?	2
i.	State the Mathematical Induction Law.	2
j.	Find the minimum number of students in a class so that three of them are born in the same month.	2

SECTION B

2. Attempt any three of the following:

a.	Define the composition of function. If $f(x) = x^2 - 1$ and $g(x) = (3x + 1)$, find: i) gof, ii) fog, iii) gog, iv) fof	10
1		1.0
b.	IF $A = (a, b, c)$, show that $(P(A), \subseteq)$ is a Poset and draw its Hasse diagram.	10
c.	Rewrite the following argument using quantifiers, variables and predicate	10
	symbols. Prove the validity of the argument: "If it rains then it will be cold. If it	
	is cold then I shall stay at home. Since it rainstherefore, I shall stay home".	
d.	Define the Subgroup. Prove that the additive group of even integers is a	10
	subgroup of the additive group of all integers.	
e.	Prove that: $8^n - 3^n$ is a multiple of 5 for all $n \ge 1$ by mathematical induction.	10

SECTION C

3. Attempt any *one* part of the following:

a.	In a group of 850 person, 600 can speaks Hindi and 340 can speak Tamil. Find							
	:i) How many can speak both Hindi and Tamil?							
	ii) How many can speak Hindi only?							
	iii) How many can speak Tamil only?							
b.	If R be the relation on set $A = \{a, b, c, d\}$ and $R = \{a, b, c, d\}$	10						
	$\{(a,b),(b,c),(d,c),(d,a),(a,d),(d,d)\}.$							
	Determine: i) Reflexive closure of R , ii) Symmetric closure of R , iii) Transitive							
	closure of R							

4. Attempt any *one* part of the following:

a.	Express the Boolean expression: $f(x, y, z) = (x'y)'(x + z)$ in both	10				
	disjunctive and conjunctive normal forms.					
b.	Use Karnaugh map representation to find minimal sum of products expression	10				
	for the following Boolean function:					
	$F(A, B, C_1) = \sum_{i=1}^{n} (0, 2, 3, 4, 7)$					

5. Attempt any *one* part of the following:

				Sub	ject	Coc	le: F	CA	104
Roll No:									

Printed Page: 2 of 2

MCA (SEM I) THEORY EXAMINATION 2023-24 DISCRETE MATHEMATICS

TIME: 3HRS M.MARKS: 100

a.	Prove the following Equivalence: $p \rightarrow (q \lor r) \equiv (p \rightarrow q) \lor (p \rightarrow r)$	10
b.	Obtain the disjunctive normal form(DNF) of the following logical	10
	expression: $p \to ((p \to q) \land \sim (\sim q \lor \sim p).$	

6. Attempt any *one* part of the following:

a.	If the Inverse of an element "a" in a group is a^{-1} , then the Inverse	10
	a^{-1} is $a, ie(a^{-1})^{-1} = a$.	
b.	Show that the set of fourth roots of unity forms an abelian group with respect to	10
	multiplication.	

7. Attempt any *one* part of the following:

a.	Solve the following Recurrence Relation:	10
	$a_n - 7a_{n-1} + 10a_{n-2} = 0$ with initial conditions $a_0 = 0$ and $a_1 = 3$	
b.	What do mean by Generating function. Find the Generating function of the	10
	following series:1,1,1,1,1,1.	

O.P.2.ADP.2.091 12.03.202A08:51:53 210:212.85.151