

1.

|          |  |  |  |   |      | 111   | пцес | IIA  | ge. i | 01 2 |
|----------|--|--|--|---|------|-------|------|------|-------|------|
|          |  |  |  | S | ubje | ect C | ode  | : M' | ГCS   | 3102 |
| Roll No: |  |  |  |   |      |       |      |      |       |      |

## MTECH (SEM I) THEORY EXAMINATION 2023-24 ADVANCED ALGORITHM

TIME: 3HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

#### **SECTION A**

| <u>Attem</u> |                                                                                             |
|--------------|---------------------------------------------------------------------------------------------|
| a.           | What do you understand by stable sort? Name two stable sort algorithms.                     |
| b.           | What do you understand by in place sorting algorithm?                                       |
| c.           | Explain different techniques for analyzing the algorithm.                                   |
| d.           | Give the recurrence relation for Merge Sort algorithm and also explain its time complexity. |
| e.           | What do you understand by frequency count?                                                  |
| f.           | Explain the properties of Max Heap with example.                                            |
| g.           | Define principle of optimality.                                                             |

# SECTION B

| 2. Atte | mpt any three of the following: $7 \times 3 = 21$                                                                                                                                                                     |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a.      | Prove that if $n>=1$ , then for any $n$ key B-Tree of height $h$ and minimum degree $t>=2$ $h<=log_t((n+1)/2)$                                                                                                        |
| b.      | Identify the time complexity for the following Recurrences.<br>i) $T(n)=T(n-1)+n^3$ using Iteration Method<br>ii) $T(n)=2T(n/2)+n^2$ using Master Method                                                              |
| C       | What is Knapsack problem? Solve Fractional Knapsack problem using greedy programming for the following four items with their weights $w = \{3,5,9,5\}$ and values $P = \{45,30,45,10\}$ with Knapsack capacity is 16. |
| d       | Discuss the statement "The height of a Red-black tree is never more than 2*lg(n+1) where n is the total number of internal nodes in the tree.                                                                         |
| e       | Explain Counting sort on the following array { 0, 0, 1, 1, 1, 3, 3, 5, 5, 5, 3, 2, 2}                                                                                                                                 |

#### SECTION C

| <b>3.</b> A | ttem | ot any <i>one</i> part of the following:                                                                              | $7 \times 1 = 7$ |
|-------------|------|-----------------------------------------------------------------------------------------------------------------------|------------------|
|             |      | Apply quick Sort on the array {7, 2, 3, 4, 9, 15, 6, 12, 11, 19,2 worst-case time complexity of quick sort algorithm. | 20}. What is the |
|             | b.   | What do you understand by sorting in linear time. Explain wi                                                          | th an example.   |

| 4. | Attem | pt any <i>one</i> part of the following: $7 \times 1 = 7$                                                                                              |
|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | a.    | Discuss the various cases for insertion of key in red-black tree for given sequence of key in an empty red-black tree- {15, 13, 12, 16, 19, 23, 5, 8}. |
|    | b.    | Create B tree of degree 3 for the following sequence of keys. Show the structure in both cases after every insertion. 21, 30, 56, 17, 19, 48, 29, 24   |



Printed Page: 2 of 2 **Subject Code: MTCS102 Roll No:** 

## MTECH (SEM I) THEORY EXAMINATION 2023-24 ADVANCED ALGORITHM

TIME: 3HRS **M.MARKS: 70** 

| 5. | Attempt any one                   | part of the following: |
|----|-----------------------------------|------------------------|
| •  | 1 I C C C III D C C III , O T C C | part of the following. |

 $7 \times 1 = 7$ 

| a. | Explain CREW/EREW algorithm.                                                                         |
|----|------------------------------------------------------------------------------------------------------|
| b. | What do you understand by parallel algorithm? Explain the performance measure of parallel algorithm. |

#### Attempt any *one* part of the following: 6.

 $7 \times 1 = 7$ 

| a. | Explain the difference between greedy and dynamic programming approach.      |
|----|------------------------------------------------------------------------------|
|    | Solve any one problem using dynamic programming.                             |
| b. | What do you understand by branch and bound technique? Give the solution of 4 |
|    | queen problem using backtracking.                                            |

#### 7. Attempt any one part of the following:

|       | queen problem using backtracking.                                                                            |     |
|-------|--------------------------------------------------------------------------------------------------------------|-----|
| Attem | ipt any <i>one</i> part of the following: $7 \times 1 = 7$                                                   |     |
| a.    | Differentiate BFS and DFS algorithm. Explain with an example.                                                |     |
| b.    | Explain NP, NP complete and NP hard problems.                                                                | N   |
|       | CRAMBRA AND AND AND AND AND AND AND AND AND AN                                                               | (5) |
|       | Differentiate BFS and DFS algorithm. Explain with an example.  Explain NP, NP complete and NP hard problems. |     |