

				Sul	bjec	t Co	de:]	BAS	302
Roll No:									
Roll No:									

Printed Page: 1 of 2

BTECH (SEM III) THEORY EXAMINATION 2023-24 MATHEMATICS-III

TIME: 3HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1	Attempt <i>all</i> questions in brief.	$2 \times 7 = 14$
1.	Attempt an questions in priet.	$2 \times 7 = 14$

1.	Attempt an questions in bitel.	A / 17	
Q no.	Question	Marks	СО
a.	Solve the Partial differential equation $pq = 3p + 4q$	2	1
b.	Tell the classification of the following partial differential equation $\partial^2 u \partial^2 u \partial^2 u$	2	2
	$4 \frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial t} + 6 \frac{\partial^2 u}{\partial t^2} = 0$		
c.	State convolution theorem on Fourier transformation	2	2
d.	For a Binomial distribution, mean is 6 and variance is 4. Determine q.	2	3
e.	If Regression Coefficients are 0.5 and 0.5, what would be the value of coefficient	2	3
	of correlation?		
f.	Find the missing value of the following table:	2	4
	x: 1 2 3 4 5		, '
	f(x): 7 - 13 21 37	8	3 .
g.	Write the formula of Trapezoidal rule.	2	5

SECTION B

2. Attempt any three of the following:

Attempt any three of the following:	x 3 = 21	
Examine the partial differential equation	7	1
$(D^2 - 2DD' + D'^2)z = \cos(2y - 3x)$		
Determine the solution of one dimensional heat equation with the given	7	2
conditions $u(0,t) = 0$, $u(l,t) = 0$, $u(x,0) = x$.		
From the following data, calculate the equations of line of regression of y	7	3
on x and x on y.		
x 6 2 10 4 8		
y 9 11 5 8 7		
Find a positive value of $(17)^{1/3}$ correct to four decimal places by Newton's	7	4
Raphson method.		
Use fourth order Runge –Kutta method to find y(0.2) solving	7	5
dy 1. 2. (0) 0		
$\int \frac{dx}{dx} = 1 + y$; $y(0) = 0$		
	Examine the partial differential equation $ (D^2 - 2DD' + D'^2)z = cos(2y - 3x) $ Determine the solution of one dimensional heat equation with the given conditions $u(0,t) = 0$, $u(l,t) = 0$, $u(x,0) = x$. From the following data, calculate the equations of line of regression of y on x and x on y .	Examine the partial differential equation $(D^2 - 2DD' + D'^2)z = cos(2y - 3x)$ Determine the solution of one dimensional heat equation with the given 7 conditions $u(0,t) = 0$, $u(l,t) = 0$, $u(x,0) = x$. From the following data, calculate the equations of line of regression of y on x and x on y . $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

SECTION C

3. Attempt any *one* part of the following: $7 \times 1 = 7$

a.	Solve the Partial differential equation of $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = x^2 y^2$	7	1
b.	By using Charpit's method to evaluate the solution of $px + qy = pq$	7	1

Printed Page: 2 of 2 Subject Code: BAS302

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2023-24 MATHEMATICS-III

TIME: 3HRS M.MARKS: 70

4. Attempt any <i>one</i> part of the following	4.	Attempt any	v <i>one</i> nart	of the	following
---	----	-------------	-------------------	--------	-----------

7	₩7	1	_	7	
- /	Х	1	=	/	

a.	Determine Fourier Sine transform of the function $F(x) = \frac{e^{-ax}}{x}$, a>0.	7	2
b.	Solve the following partial differential equation by method of separation of variables: $\frac{\partial u}{\partial t} - \frac{\partial u}{\partial x} + 2u = 0. u(x,0) = 10e^{-x} - 6e^{-4x}.$	7	2

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a.	Use the method of least squares to fit the curve y=a+bxfor the following data:								7	3
		X	1	2	3	4	5			
		у	12	14	15	19	22			
b.	Compute skewnes	Compute skewness and Kurtosis, if the first four moments of a frequency								
	distribution abou	t the	value 4	4 of the	variabl	e are 1	,4,10	and 45.		

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

0.	recempt any one	our t or	the r	0110 1111	18"	*		/ A. I. ()		
a.	Find a real root of the	ne follo	wing 6	equation	ns by th	e metho	od of	false position correct 7	4	
	to four decimal places $x^3 - 5x + 3 = 0$									
				OX	•					
b.	Using Newton's div	ided di	fferen	ce form	ula. Cal	culate t	he val	lue of f(6) from the 7	4	
	following data:									
		X	1	4	7	9	12	``\		
		f(x)	10	22	32	43	56	6		

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a.	Solve the system of equations using gauss Seidel method. 2x+10y+z=51, 10x+y+2z=44, x+2y+10z=61.	7	5
b.	Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Simpson's one – third rule.	7	5