Printed Pages: 04 Subject Code: NOE073
Paper Id: 199703 Roll No:

BTECH (SEM VII) THEORY EXAMINATION 2018-19 OPERATIONS RESEARCH

Time: 3 Hours Total Marks: 100

Notes: Assume any Missing Data.

SECTION - A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. What is the role of operations research in decision making?
- b. "Dual of a dual is it's primal." Explain.
- c. Degeneracy in a transportation problem.
- d. What are assignment problems? Give two examples.
- e. What is float? What are the different types of float?
- f. What is looping and dangling in network diagram?
- g. What is two person zero-sum games?
- h. Characteristics of M/M/I queue model.
- i. Discuss the various costs involved in an inventory model
- Write a lucid note on replacement problem.

SECTION - B

2. Attempt any three of the following:

 $10 \times 3 = 30$

a. Three machine shops A, B, C produces three types of products X, Y, Z respectively. Each product involves operation of each of the machine shops. The time required for each operation on various products is given as follows:

Machine Shops					
Products	A	В	C	Profit per unit	
x [10	7	2	\$12	
Y	2	3	4	\$3	
z	1	2	1	\$1	
Available Hours	100	77	80		

The available hours at the machine shops A, B, C are 100, 77, and 80 only. The profit per unit of products X, Y, and Z is \$12, \$3, and \$1 respectively.

b. Find the optimal solution of the following transportation problem in which cell entries

	Market				
		I	II	III	Supply
Ware	Α	4	14	8	10
House	В	6	6	2	16
	C	10	8	14	14
	D	2	12	4	28
Requirement		14	18	36	68

c. The following table shows the various jobs of a network along with their time estimates:

Activity	Estimated Duration work			
	Optimistic	Most Likely	Pessimistic	
1-2	1	i	7	
1-3	1	4	7	
2-4	2	2	8	
2-5	1	1	1	
3-5	2	5	14	
4-6	2	5	8	
5-6	3	6	15	
6-7	2	4	8	

Draw a network diagram and determine the critical path. What is the minimum time for completion of projects?

- d. What do you understand by queuing model? Why do arrivals and services follow the Poisson and Exponential distribution respectively?
- e. The demand for an inventory item each costing Re5, is 20000 units per year. The ordering cost is Rs.10. The inventory carrying cost is 30% based on the average inventory per year. Stock out cost is Rs.5 per unit of shortage incurred. Find out various parameters.

SECTION - C

3. Attempt any one part of the following:

 $10 \times 1 = 10$

a Solve the following LPP

Maximize $Z = 5X_1 + 10 X_2 + 8 X_3$

Subject to the following constraints

 $3 X_1 + 5 X_2 + 2 X_3 \le 60$

 $4 X_1 + 4 X_2 + 4 X_3 \le 72$

 $2X_1+4X_2+5X_3 \le 100$

b What is sensitivity analysis Discuss its significance from managerial viewpoint. Write the dual of the following primal problem:

Maximize $Z = -5x_1+2x_2$ Subject to: $X_1 - X_2 \ge 2$ $2X_1+3X_2 \le 5$ $X_1, X_2 \ge 0$

4. Attempt any one part of the following:

 $10 \times 1 = 10$

 A wholesale company has three warehouses from which retail customers. The company deals in a single product, the supply of which at each warehouse are

Warehouse No.	Supply units	Customer No.	Demand units
1	20	Α	15
П	28	В	19
111	17	C .	13
		D	- 18

Conveniently, total supply at the warehouses is equal to customers. The following table gives the transportation cost per unit shipment from each warehouse to each customer: