

				,	Subj	ect	Cod	e: K	ME	603
Roll No:										

BTECH (SEM VI) THEORY EXAMINATION 2023-24 THEORY OF MACHINE

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 3

Q no.	Question	Marks	CO
a.	What is constrained motion? Define.	02	1
b.	State Kennedy's theorem.	02	1
c.	What is the difference between radial follower & offset follower?	02	2
d.	State law of gearing.	02	2
e.	State D'Alembert's principle?	02	3
f.	What is coefficient of fluctuation of speed?	02	3
g.	What are the conditions of secondary balancing?	02	4
h.	What do you mean by hunting of governor?	02	4
i.	What is a Gyroscope?	02	5
j.	What is dynamometer?	02	5

SECTION B

2. Attempt any three of the following:

 $3 \times 10 = 30$

a.	Locate all the instantaneous centers of the slider crank mechanism as	10	1
	shown in Fig. The lengths of crank OB and connecting rod AB are 100		
	mm and 400 mm respectively. If the crank rotates clockwise with an		
	angular velocity of 10 rad/s, find: 1. Velocity of the slider A, and 2.		
	Angular velocity of the connecting rod AB.		
	B		
	400 mm		
	minimum 150		
	A • 45° 0		
b.	A pinion having 30 teeth drives a gear having 80 teeth. The profile of the	10	2
	gears is involute with 20° pressure angle, 12 mm module and 10 mm		
	addendum. Find the length of path of contact, arc of contact and the		
	contact ratio.		
c.	With the help of suitable diagram, derive the expression for velocity &	10	3
· ·	acceleration of the piston of reciprocating engine.	10	5
d.		10	4
a.	A, B, C and D are four masses carried by a rotating shaft at radii 100,	10	4
	125, 200 and 150 mm respectively. The planes in which the masses		
	revolve are spaced 600 mm apart and the mass of B, C and D are 10 kg,		
	5 kg, and 4 kg respectively. Find the required mass A and the relative		
	angular settings of the four masses so that the shaft shall be in complete		
	balance.		
e.	With the help of a neat sketch explain the working of a block or shoe	10	5
	brake. What is meant by a self-locking and a self-energized brake?		-
		1	

				;	Subj	ject	Cod	e: K	KME603						
Roll No:															

BTECH (SEM VI) THEORY EXAMINATION 2023-24 THEORY OF MACHINE

TIME: 3 HRS **M.MARKS: 100**

SECTION C

Attempt any one part of the following: 3.

 $1 \times 10 = 10$

Printed Page: 2 of 3

a.	What do you understand by inversion? Discuss any one inversion of double slider crank chain.	10	1
b.	Explain Coriolis component of acceleration and derive the expressions	10	1
	for Coriolis component of acceleration.		

4. Attempt any one part of the following:

 $1 \times 10 = 10$

5.	Attempt any one part of the following:	$1 \times 10 =$	= 10
	harmonic motion.		
	valve, while being raised and lowered, is to take place with simple		
	rod passes through the axis of the cam shaft, The displacement of the	2.	
	25 mm. Draw the profile of the cam when the line of stroke of the valve	いし	
	The diameter of the roller is 20 mm and the diameter of the cam shaft is		
	4. To keep the valve closed during rest of the revolution i.e. 150°;	0	
	3. To lower the valve during next 60°; and		97-
	2. To keep the valve fully raised through next 30°;		
	1. To raise the valve through 50 mm during 120° rotation of the cam;		
	valve rod, motion described below:		
	uniform speed is to be designed to give a roller follower, at the end of a		
b.	A cam, with a minimum radius of 25 mm, rotating clockwise at a	10	2
	to avoid interference.		
a.	Derive the expression for minimum number of teeth required on pinion	10	2

Attempt any one part of the following: 5.

a.	The turning moment diagram for a petrol engine is drawn to the	10	3
	following scales: Turning moment, 1 mm = 5 N-m; crank angle, 1 mm =		
	1°. The turning moment diagram repeats itself at every half revolution of		
	the engine and the areas above and below the mean turning moment line		
	taken in order are 295, 685, 40, 340, 960, 270 mm ² . The rotating parts		
	are equivalent to a mass of 36 kg at a radius of gyration of 150 mm.		
	Determine the coefficient of fluctuation of speed when the engine runs at		
	1800 r.p.m.		
b.	A four-link mechanism with the following dimensions is acted upon by a	10	3
	force 80 N at 150° on the link DC as shown in fig. AD = 500 mm, AB =		
	400 mm, BC = 1000 mm, DC = 750 mm, DE = 350 mm Determine the		
	input torque T on the link AB for the static equilibrium of the		
	mechanism for the given configuration.		
	Ç Ç		
	3		
	(4)		
	E .150°		
	F=80 N		
	120°		
	- M		
	(a) BU		

				,	Subj	ject	Cod	e: K	ME	603
Roll No:										

BTECH (SEM VI) THEORY EXAMINATION 2023-24 THEORY OF MACHINE

TIME: 3 HRS **M.MARKS: 100**

Attempt any one part of the following: 6.

 $1 \times 10 = 10$

Printed Page: 3 of 3

a.	What do you understand by effort and power of governor? Find its	10	4
	expression.		
b.	The arms of a Porter governor are each 250 mm long and pivoted on the	10	4
	governor axis. The mass of each ball is 5 kg and the mass of the central		
	sleeve is 30 kg. The radius of rotation of the balls is 150 mm when the		
	sleeve begins to rise and reaches a value of 200 mm for maximum speed.		
	Determine the speed range of the governor. If the friction at the sleeve is		
	equivalent of 20 N of load at the sleeve, determine how the speed range		
	is modified.		

7. Attempt any one part of the following:

	is modified.		
7.	Attempt any one part of the following:	1 x 10	= 10
a.	What is the difference between absorption and transmission dynamometer? Also explain torsion dynamometer.	10	5
) .	Describe the working principle of Gyroscope with the help of suitable example.	10	5
			7.
		2)	*
	R'V		
	0:2		
	201		