

Subject Code: KCS0										064			
Roll No:													

BTECH (SEM VI) THEORY EXAMINATION 2023-24 DATA COMPRESSION

TIME: 3 HRS M.MARKS: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1.	Attempt all questions in brief.	2*	10 = 20
Qno	Questions	Marks	CO
(a)	What is Data Compression? Why it is needed?	02	1
(b)	Define compression ratio.	02	1
(c)	Explain the Huffman Algorithm	02	2
(d)	Discuss audio Compression.	02	2
(e)	Explain CALIC.	02	3
(f)	Define the term PPM.	02	3
(g)	Define distortion.	02	4
(h)	What do you understand by Quantization? Describe its types.	02	4
(i)	Write advantages of Tree structured vector quantization.	02	5
(j)	Explain scalar quantization	02	5

SECTION B

2. Attempt any three of t	the	tollowing:	d
---------------------------	-----	------------	---

		_	- "	~//
- 17	D*3	_	-31	т -
		_	. 71	

Printed Page: 1 of 2

Attempt any three of the following.	10	3 7 30
What do you mean by Uniquely Decodable code? Determine whether	10	1
the following codes are uniquely decodable or not: (i) {0,01,11,111}		
(ii) {0,01,110,111} (iii) {1,10,110,111} (iv) {0,01,10}	VO.	
Explain rice coding and it's implementation.	10	2
A sequence is encoded using LZW algorithm and the initial dictionary	10	3
shown in the table.		
Index Entry		
1 a		
2 b		
3 r		
4 t		
The output of LZW encoder is the following sequence:		
3 I 4 6 8 4 2 I 2 5 10 6 11 13 6		
Decode this sequence.		
What do you understand by adaptive quantization? Explain the various	10	4
approaches to adapting the quantizer parameters.		
Explain the steps of the Linde-Buzo-Gray algorithm.	10	5
	What do you mean by Uniquely Decodable code? Determine whether the following codes are uniquely decodable or not: (i) {0,01,11,111} (ii) {0,01,110,111} (iii) {1,10,110,111} (iv) {0,01,10} Explain rice coding and it's implementation. A sequence is encoded using LZW algorithm and the initial dictionary shown in the table. Index Entry 1	What do you mean by Uniquely Decodable code? Determine whether the following codes are uniquely decodable or not: (i) {0,01,11,111} (ii) {0,01,110,111} (iii) {1,10,110,111} (iv) {0,01,10} Explain rice coding and it's implementation. A sequence is encoded using LZW algorithm and the initial dictionary shown in the table. Index Entry 1

SECTION C

3. A	Attempt	any one	part of	the fol	lowing:

10 1 - 10	1	=10	,
-----------	---	-----	---

<u> </u>	recempt any one part of the fone wing.		10 1	
(a)	Explain modeling and coding with the help of examples. What do you	10	1	
	understand by prefix code explain by an example?			
(b)	Discuss various Data Compression models in detail.	10	1	

Subject Code: KCS0												5064	
Roll No:													

Printed Page: 2 of 2

BTECH (SEM VI) THEORY EXAMINATION 2023-24 DATA COMPRESSION

TIME: 3 HRS M.MARKS: 100

4.	Attempt any one part of the following:	10	*1 = 10
(a)	Draw the Huffman tree for the following symbols whose frequency	10	2
	occurrence in a message text is started along with their symbol below:		
	A:15, B:6, C:7, D:12, E:25, F:4, G:6, H:10, I: 15 . Find the Huffman		
	code and average code length.		
(b)	Design Golomb code for m=5 and n=6,7,8,9,10.	10	2

5.	Attempt any one part of the following:	10)*1=10
(a)	Discuss BWT with the help of an example.	10	3
(b)	Compare and explain LZ77, LZ78 and LZW schemes.	10	3

6.	Attempt any one part of the following:	10	*1 = 10
(a)	Describe the steps involved in Basic Algorithm for Prediction with	10	4
	Partial Match (PPM).		
(b)	What do you understand by Uniform quantizer? How uniform	10	4
	quantization of a uniformly distributed sources and uniform		
	quantization of non-uniform sources is done?		<

7.	Attempt any one part of the following:	10*1 = 10
(a)	Describe the advantages of vector quantization over scalar Quantization	10 5
(b)	Explain Structure vector quantization and Pyramid vector quantization.	10 5
	O.P. 1. 1. 1. 1. 2. 2. 1	