Printed Pages: 1	Roll No.						NCS064
i i i i i i i i i i i i i i i i i i i	11011 1 100	\sqcup					1100001

B.TECH.

THEORY EXAMINATION (SEM-VI) 2016-17 APPROXIMATION AND RANDOMIZED ALGORITHMS

Time: 3 Hours Max. Marks: 100

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION-A

1 Explain the following:

 $(10 \times 2 = 20)$

- a) Define principle of optimality.
- **b**) Define linear programming
- Solve the recurrence relation, where T(1)=1 and T(n) for $n\geq 2$ satisfies T(n)=3T(n/2)+n
- **d**) What is order of growth?
- e) Define Θ -notation.
- **f**) Give two examples of randomized algorithms.
- **g**) What is amortized efficiency?
- **h)** State two applications of Approximation algorithms.
- i) What is derandomized algorithms?
- **j**) What is bin packing?

SECTION-B

2 Attempt any five of the following:

 $(10 \times 5 = 50)$

- a) Explain in detail about simplex method
- **b**) Illustrate the steps involved in analyzing algorithm using an example.
- c) Explain a sorting algorithm that use divide and conquer method.
- **d**) Explain P, NP and NP complete problems.
- e) Define Linear Programming
- **f**) Explain permutation routing in a hypercube.
- g) Discuss Euclidean TSP.
- **h)** Discuss k-median on a cycle with suitable example.

SECTION-C

Attempt any two of the following:

 $(15 \times 2 = 30)$

- 3. Suggest an approximation algorithm for traveling salesperson problems using Minimum spanning tree algorithm. Assume that the cost function satisfies the triangle inequality.
- 4. Explain in detail about approximation algorithm for the Knapsack problem.
- 5. Discuss some examples of randomized algorithms using basic inequalities and random variables.