

1.

					Pri	nted	l Pa	ge: 1	of 2	
				Sul	ject	Co	de: l	RAS	103	,
Roll No:										

BTECH (SEM I) THEORY EXAMINATION 2023-24 ENGINEERING MATHS-I

TIME: 3HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Atte	mpt all questions in brief.	$2 \times 7 = 14$
a.	Define Leibnitz theorem.	
b.	If $u = \tan^{-1}(x^2 + y^2)$, then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	
c.	If $x = uv$, $y = \frac{u+v}{u-v}$, Find $\frac{\partial(u,v)}{\partial(x,y)}$	
d.	Find the Eigen values of matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.	
e.	Find the value of $\Gamma - 1/2$.	
f.	State Green's theorem.	
g.	Find the Value of k for which a vector $\vec{F} = (kx + 4y^2z)i + (x^3s)(e^x + 4cosx^2y)k$ is a Solenoidal Vector.	sinz – 3y)j –

SECTION B

2.	Attempt any <i>three</i> of the following:	
4.	Attempt any three of the following.	

7	v	3	=	21
- /	А	J	_	41

) , also
$^{3} = 0$,
2]
-4.
<u> 3 J</u>
nited by
here

SECTION O

3. Attempt any *one* part of the following:

$$7 \times 1 = 7$$

a.	If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$ prove that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$
b.	Verify Euler theorem for $u = log(\frac{x^4 + y^4}{x + y})$.

4. Attempt any *one* part of the following:

$7 \times 1 = 7$

a.	Expand $x^2+3y^2-9x-9y+26$ in powers of $(x-1)$ and $(y-2)$ by Taylor's theorem
	up to second degree term.
b.	In estimating the number of bricks in a pile which is measured to be $(5 \text{ m} \times 10 \text{ m})$
	× 5 m), the count of bricks is taken as 100 bricks per m ³ . Find the error in the cost
	when the tape is stretched 2 % beyond its standard length. The cost of bricks is
	2000 Rs. per thousand bricks.

				Sul	oject	Co	de: Ì	RAS	3103
Roll No:									

BTECH (SEM I) THEORY EXAMINATION 2023-24 ENGINEERING MATHS-I

TIME: 3HRS M.MARKS: 70

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

Printed Page: 2 of 2

a.	$\begin{bmatrix} 2 & -1 & 1 \end{bmatrix}$
	Using Cayley - Hamilton Theorem find $A^{-1} = \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}$
	$\begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$
b.	Investigate for what values of λ and μ do the system of the equation $x + y + z = 0$
	$6x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ has i) no solution ii) unique solution iii)
	infinite no.of solution.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

a.	Change the	order of integration $\int_{1}^{2} \int_{x^{2}}^{2-x} f(x, y) dxdy$
b.	Prove that \(\beta \)	$\beta(m,n) = \beta(n,m).$

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- a. Suppose that \overline{U} , \overline{V} and f are continuously differentiable fields then Prove that $\operatorname{div}(\overline{U} \times \overline{V}) = \overline{V}$. Curl $\overline{U} \overline{U}$. Curl \overline{V} .
- b. A vector field is given by $F=(x^2-y^2+x)\hat{\imath}-(2xy+y)\hat{\jmath}$. Is this field irrotational? If so find scalar potential.