

						Pri	inted	l Pa	ge: 1	of 2
				S	ubj	ect (Code	: K	AS1	03T
Roll No:										

BTECH (SEM I) THEORY EXAMINATION 2023-24 ENGINEERING MATHEMATICS-I

TIME: 3HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	2 x 10 =	= 20
Qno.	Question	Marks	CO
a.	Find the Rank of the matrix $\begin{bmatrix} 10 & 101 \\ 20 & 202 \end{bmatrix}$.	2	1
b.	Define singular and non singular matrix.	2	1
c.	Define Rolle's theorem.	2	2
d.	If $y = x^2 e^x$, find y_n .	2	2
e.	Find the stationary point of $f(x,y) = x^3 + y^3 + 3axy$.	2	3
f.	If $u = \sin^{-1}(x^2 + y^2)^{\frac{1}{5}}$, then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	2	3
g.	Evaluate $\int_0^1 \int_0^{x^2} x^2 y^2 dx dy$.	2	4
h.	Write the formula of area and volume by integration.	2	4
i.	Find the unit normal vector at the surface $z = x^2 + y^2$ at $(1, 2)$.	2	5
j.	State Stokes theorem.	2)5

SECTION B

2.	Attempt any three of the following:	10x 3 =	30
a.	Find the Eigen values and Eigen vectors of the following	10	1
	matrix: $\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$.		
b.	If $y = e^{m \cos^{-1} x}$ show that $(1-x^2) y_{n+2} - (2n+1) x y_{n+1} - (n^2+m^2) y_n = 0$,	10	2
	also calculate $y_n(0)$.		
c.	If u, v, w are the roots of the equation $(\lambda - x)^3 + (\lambda - y)^3 +$	10	3
	$(\lambda - z)^3 = 0$, find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.		
d.	Change the order of integration $\int_{1}^{2} \int_{x_{2}}^{2-x} f(x, y) dxdy$.	10	4
e.	Verify the Greens theorem to evaluate the line integral $\int (2y^2 dx + 3x)$	10	5
	dy), where C is the boundary of the closed region by $y = x$ and $y = x^2$.		

SECTION C

3.	Attempt any one part of the following:	10x 1 =	10
a.	Find inverse by elementary transformation $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$	10	1
b.	Investigate for what values of λ and μ do the system of the equation $x + y + z = 6, x + 2y + 3z = 10, x + 2y + \lambda z = \mu$ has i) no solution ii) unique solution iii) infinite no. of solution.	10	1

Printed Page: 2 of 2
Subject Code: KAS103T
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2023-24 ENGINEERING MATHEMATICS-I

TIME: 3HRS M.MARKS: 100

4.	Attempt any <i>one</i> part of the following:	10x 1 =	10
a.	If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$ prove that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$	10	2
b.	Verify Lagrange's Mean value theorem for the function $f(x) = x^3$ in [-2,2]	10	2

5.	Attempt any <i>one</i> part of the following:	10x 1 =	10
a.	Expand $x^2+3y^2-9x-9y+26$ in powers of $(x-1)$ and $(y-2)$ by Taylor's	10	3
	theorem up to second degree term.		
b.	In estimating the number of bricks in a pile which is measured to be (5	10	3
	m \times 10 m \times 5 m), the count of bricks is taken as 100 bricks per m ³ . Find		
	the error in the cost when the tape is stretched 2 % beyond its standard		
	length. The cost of bricks is 2000 Rs. per thousand bricks.		

6.	Attempt any <i>one</i> part of the following:	10x 1 = 10
a.	Evaluate $\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} (x^2 + y^2) dxdy$ by changing into polar Co-	10 4
	ordinates.	0,0,
b.	Calculate the volume of solid bounded by the surface $x=0,y=0,x+y+z=0$	10 4
	and $z=0$.	NV
		V

7.	Attempt any one part of the following:	10x 1 =	10
a.	Prove that $(y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2xy)i$	10	5
	(2z)k is both solenoidal and irrotational.		
b.	Using Green's Theorem evaluate $\int_C (x^2 + xy)dx + (x^2 + y^2)dy$, where C is the square formed by the lines $x = \pm 1, y = \pm 1$.	10	5
	where C is the square formed by the lines $x = \pm 1$, $y = \pm 1$.		
	N8.03.202A 08:23		